Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong Jiang,^a Xiang-Shan Wang,^{b,a}* Mei-Mei Zhang,^b Chang-Sheng Yao^b and Shu-Jiang Tu^b

^aKey Laboratory of Biotechnology of Medicinal Plants of Jiangsu Province, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ^bDepartment of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: xswang1974@yahoo.com

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (C–C) = 0.004 Å R factor = 0.062 wR factor = 0.158 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-(2-Chlorophenyl)-7,7-dimethyl-10-(4-methylphenyl)-7,8-dihydro-5*H*-indeno[1,2-b]quinoline-9,11(6*H*,10*H*)-dione dimethylformamide solvate

The title compound, $C_{31}H_{26}CINO_2 \cdot C_3H_7NO$, was synthesized by the reaction of 2-chlorobenzaldehyde, 5,5-dimethyl-3-(4methylanilino)cyclohex-2-enone and 1,3-indenedione in an ionic liquid medium. The 1,4-dihydropyridine ring adopts a boat conformation, while the cyclohexenone ring adopts an envelope conformation. In the crystal structure, $C-H \cdot \cdot \cdot O$ hydrogen bonds link the indeno[1,2-*b*]quinoline molecules and the dimethylformamide solvent molecules to form a threedimensional network.

Comment

It is known that many quinoline-containing compounds exhibit a wide spectrum of pharmacological activities, such as antiplasmodial (Beagley *et al.*, 2003), antibacterial (Fokialakis *et al.*, 2002), antiproliferative (Fossa *et al.*, 2002), antimalarial (Ryckebusch *et al.*, 2003) and anticancer activities (Morgan *et al.*, 2002). In order to establish the conformational aspects of these potentially biologically active compounds, we report here the structure of the title quinoline derivative, (I).

The 1,4-dihydropyridine ring of (I) adopts a boat conformation (Fig. 1). Atoms C3 and N1 deviate from the basal plane defined by the atoms C1/C2/C4/C5 by 0.242 (4) and 0.090 (1) Å, respectively. Similar distortions were observed in 2-amino-4-(2-chlorophenyl)-7,7-dimethyl-1-(4-methylphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile (Jiang *et al.*, 2006), 7,7-dimethyl-2-(4-bromophenyl)-4-phenyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline (Shi *et al.*, 2002) and 3,3,6,6tetramethyl-9-(4-chlorophenyl)-10-(4-methylphenyl)-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione (Wang *et al.*, 2003). The cyclohexenone ring, C1/C2/C6–C9, adopts an envelope conformation; atom C8 deviates from the mean plane of the remaining atoms by 0.623 (4) Å. A similar conformation has been found in the structure of 7,7-dimethyl-

organic papers

Received 24 October 2006 Accepted 6 November 2006

© 2006 International Union of Crystallography

All rights reserved

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

2-amino-3-cyano-4-(3,4-methylenedioxyphenyl)-5-oxo-5,-6,7,8-tetrahydro-4*H*-benzo[*b*]pyran (Wang *et al.*, 2002). The benzene rings subtend a dihedral angle of $10.7 (1)^{\circ}$ with one another.

Molecules of (I) are linked together and to molecules of the solvent by $C-H \cdots O$ hydrogen bonds, forming a threedimensional network (Table 2, Fig. 2).

Experimental

The title compound, (I), was prepared by the reaction of 2-chlorobenzaldehyde (1 mmol, 0.14 g), 5,5-dimethyl-3-(4-methylanilino)cyclohex-2-enone (1 mmol, 0.23 g) and 1,3-indenedione (1 mmol, 0.15 g) in an ionic liquid, $[\text{Bmim}^+][\text{BF}_4^-]$ $(\text{Bmin}^+$ is the 1butyl-3-methyl imidazolium cation) (5.0 ml) at 363 K for 6 h (yield 98%; m.p. 536-538 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a dimethylformamide solution. Elemental analysis, calculated: C 73.83, H 6.01, N 5.06%; found: C 73.89, H 5.90, N 5.01%.

Crystal data

C ₃₁ H ₂₆ ClNO ₂ ·C ₃ H ₇ NO	$V = 1396.8 (4) \text{ Å}^3$
$M_r = 553.07$	Z = 2
Triclinic, P1	$D_x = 1.315 \text{ Mg m}^{-3}$
a = 10.872 (2) Å	Mo $K\alpha$ radiation
b = 11.655 (2) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 11.689 (2) Å	T = 153 (2) K
$\alpha = 92.100 \ (4)^{\circ}$	Block, red
$\beta = 99.730 \ (4)^{\circ}$	$0.68 \times 0.23 \times 0.15 \text{ mm}$
$\gamma = 106.147 \ (4)^{\circ}$	

Data collection

Rigaku Mercury diffractometer ω scans Absorption correction: multi-scan (Jacobson, 1998) $T_{\min} = 0.688, T_{\max} = 0.974$

13755 measured reflections 5071 independent reflections 4222 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.032$ $\theta_{\rm max} = 25.4^\circ$

Figure 2

The packing of (I), with hydrogen bonds drawn as dashed lines.

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0722P)^2]$
+ 1.2467 <i>P</i>]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected geometric parameters	(A,	0)	J
-------------------------------	-----	----	---

N1-C5	1.371 (3)	C2-C3	1.517 (3)
N1-C1	1.414 (3)	C3-C4	1.505 (4)
C1-C2	1.354 (4)	C4-C5	1.358 (4)
C5-N1-C1	118.0 (2)	C4-C3-C2	107.5 (2)
C2-C1-N1	121.1 (2)	C5-C4-C3	123.4 (2)
C1-C2-C3	123.8 (2)	C4-C5-N1	122.5 (2)
C5-N1-C1-C2	-9.5 (4)	C2-C3-C4-C5	-20.0(3)
N1-C1-C2-C3	-4.6(4)	C3-C4-C5-N1	8.8 (4)
C1-C2-C3-C4	17.9 (3)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C34-H34A\cdotsO1^{i}$	0.98	2.51	3.259 (4)	133
$\begin{array}{c} C30-H30\cdots O3^n\\ C15-H15\cdots O3^{iii}\end{array}$	0.95 0.95	2.55 2.44	3.444 (4) 3.371 (4)	157 167

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) -x + 1, -y + 2, -z.

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H, C–H = 1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH, C–H = 0.99 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, and C–H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ atoms.

Data collection: *CrystalClear* (Rigaku, 1999); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXL97*.

The authors thank the Natural Science Foundation (grant No. 04 KJB150139) of the Education Committee of Jiangsu Province for financial support.

References

Beagley, P., Blackie, M. A. L., Chibale, K., Clarkson, C., Meijboom, R., Moss, J. R., Smith, P. & Su, H. (2003). *Dalton Trans.* pp. 3046–3051.

- Fokialakis, N., Magiatis, P., Chinou, L., Mitaku, S. & Tillequin, F. (2002). Chem. Pharm. Bull. 50, 413–414.
- Fossa, P., Mosti, L., Menozzi, G., Marzano, C., Baccichetti, F. & Bordin, F. (2002). Bioorg. Med. Chem. 10, 743–751.
- Jacobson, R. (1998). Private communication to Rigaku Corporation.
- Jiang, H., Wang, X.-S., Zhang, M.-M., Li, Y.-L. & Shi, D.-Q. (2006). Acta Cryst. E62, 01184–01186.
- Morgan, L. R., Jursic, B. S., Hooper, C. L., Neumann, D. M., Thangaraj, K. & Leblanc, B. (2002). *Bioorg. Med. Chem. Lett.* **12**, 3407–3411.
- Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Ryckebusch, A., Derprez-Poulain, R., Maes, L., Debreu-Fontaine, M. A., Mouray, E., Grellier, P. & Sergheraert, C. (2003). J. Med. Chem. 46, 542– 557.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, D. Q., Wang, X. S., Tu, S. J., Yao, C. S. & Wang, C. S. (2002). Chin. J. Struct. Chem. 21, 410–413.
- Wang, X., Shi, D. & Tu, S. (2003). Acta Cryst. E59, 01139-01140.
- Wang, X. S., Shi, D. Q., Tu, S. J., Yao, C. S. & Wang, Y. C. (2002). Chin. J. Struct. Chem. 21, 146–149.